博客
关于我
含重根的三阶实对称矩阵的快速对角化方法
阅读量:240 次
发布时间:2019-03-01

本文共 806 字,大约阅读时间需要 2 分钟。

实对称矩阵的对角化

在实对称矩阵的学习过程中,许多矩阵可以快速对角化,尤其是三阶矩阵。以下是一些实用的技巧和方法。

一、猜根法计算特征值

  • 特征值之和:三阶矩阵的特征值之和等于矩阵对角线元素之和。假设特征值均为整数,特征值之和也很容易计算。

  • 特征值之积:特征值之积等于矩阵的行列式。具体数值可以通过计算矩阵的行列式得到。

  • 整数特征值:由于特征值是整数,且特征值之和与之积已知,可以通过枚举法快速找到特征值。

  • 例如,特征值之和为3,特征值之积为5。假设特征值为a, b, c,则a + b + c = 3,abc = 5。通过枚举,唯一可能的整数解是5, -1, -1。

    二、秩一矩阵的应用

    秩一矩阵在考试中常出现,具有特殊结构,允许快速计算。

  • 矩阵表示:秩一矩阵可以表示为αβ^T,其中α、β为列向量。

  • 幂运算:秩一矩阵的k次幂可表示为(α^Tβ)^(k-1)A。

  • :矩阵的迹等于α^Tβ。

  • 特征值:秩一矩阵的特征值为α^Tβ, 0, 0, ..., 0。其中一个特征向量是α本身。

  • 对角化:秩一矩阵可以对角化,其对角线元素即为特征值。

  • 定理一:如果矩阵A可以分解为一个秩一矩阵B加上一个常数c乘单位矩阵,则A的特征值为tr(B)+c, c, ..., c。

    定理二:如果一个三阶实对称矩阵具有一个二重特征根,则可以分解为一个秩一矩阵B加上一个常数c乘单位矩阵。

    三、实战演练

    在实际操作中,快速计算特征值和特征向量是关键。

  • 特征值计算:通过特征值之和与之积,猜测特征值,例如矩阵特征值之和为1,之积为-12,猜测特征值为-3, 2, 2。

  • 秩一矩阵识别:检查矩阵是否为全零矩阵加上常数倍的单位矩阵。例如矩阵A = B + E,其中B为全1矩阵,E为单位矩阵。

  • 特征向量求解:对于二重特征值,通过矩阵分解求得特征向量,并利用向量外积计算正交矩阵。

  • 通过以上方法,可以快速解决实对称矩阵的对角化问题,节省大量时间。

    转载地址:http://bamv.baihongyu.com/

    你可能感兴趣的文章
    npm前端包管理工具简介---npm工作笔记001
    查看>>
    npm升级以及使用淘宝npm镜像
    查看>>
    npm发布自己的组件UI包(详细步骤,图文并茂)
    查看>>
    npm和yarn清理缓存命令
    查看>>
    npm和yarn的使用对比
    查看>>
    npm如何清空缓存并重新打包?
    查看>>
    npm学习(十一)之package-lock.json
    查看>>
    npm安装 出现 npm ERR! code ETIMEDOUT npm ERR! syscall connect npm ERR! errno ETIMEDOUT npm ERR! 解决方法
    查看>>
    npm安装crypto-js 如何安装crypto-js, python爬虫安装加解密插件 找不到模块crypto-js python报错解决丢失crypto-js模块
    查看>>
    npm安装教程
    查看>>
    npm报错Cannot find module ‘webpack‘ Require stack
    查看>>
    npm报错Failed at the node-sass@4.14.1 postinstall script
    查看>>
    npm报错File to import not found or unreadable: @/assets/styles/global.scss.
    查看>>
    npm报错unable to access ‘https://github.com/sohee-lee7/Squire.git/‘
    查看>>
    npm版本过高问题
    查看>>
    npm的安装和更新---npm工作笔记002
    查看>>
    npm的常用配置项---npm工作笔记004
    查看>>
    npm的问题:config global `--global`, `--local` are deprecated. Use `--location=global` instead 的解决办法
    查看>>
    npm编译报错You may need an additional loader to handle the result of these loaders
    查看>>
    npm设置淘宝镜像、升级等
    查看>>