博客
关于我
含重根的三阶实对称矩阵的快速对角化方法
阅读量:240 次
发布时间:2019-03-01

本文共 806 字,大约阅读时间需要 2 分钟。

实对称矩阵的对角化

在实对称矩阵的学习过程中,许多矩阵可以快速对角化,尤其是三阶矩阵。以下是一些实用的技巧和方法。

一、猜根法计算特征值

  • 特征值之和:三阶矩阵的特征值之和等于矩阵对角线元素之和。假设特征值均为整数,特征值之和也很容易计算。

  • 特征值之积:特征值之积等于矩阵的行列式。具体数值可以通过计算矩阵的行列式得到。

  • 整数特征值:由于特征值是整数,且特征值之和与之积已知,可以通过枚举法快速找到特征值。

  • 例如,特征值之和为3,特征值之积为5。假设特征值为a, b, c,则a + b + c = 3,abc = 5。通过枚举,唯一可能的整数解是5, -1, -1。

    二、秩一矩阵的应用

    秩一矩阵在考试中常出现,具有特殊结构,允许快速计算。

  • 矩阵表示:秩一矩阵可以表示为αβ^T,其中α、β为列向量。

  • 幂运算:秩一矩阵的k次幂可表示为(α^Tβ)^(k-1)A。

  • :矩阵的迹等于α^Tβ。

  • 特征值:秩一矩阵的特征值为α^Tβ, 0, 0, ..., 0。其中一个特征向量是α本身。

  • 对角化:秩一矩阵可以对角化,其对角线元素即为特征值。

  • 定理一:如果矩阵A可以分解为一个秩一矩阵B加上一个常数c乘单位矩阵,则A的特征值为tr(B)+c, c, ..., c。

    定理二:如果一个三阶实对称矩阵具有一个二重特征根,则可以分解为一个秩一矩阵B加上一个常数c乘单位矩阵。

    三、实战演练

    在实际操作中,快速计算特征值和特征向量是关键。

  • 特征值计算:通过特征值之和与之积,猜测特征值,例如矩阵特征值之和为1,之积为-12,猜测特征值为-3, 2, 2。

  • 秩一矩阵识别:检查矩阵是否为全零矩阵加上常数倍的单位矩阵。例如矩阵A = B + E,其中B为全1矩阵,E为单位矩阵。

  • 特征向量求解:对于二重特征值,通过矩阵分解求得特征向量,并利用向量外积计算正交矩阵。

  • 通过以上方法,可以快速解决实对称矩阵的对角化问题,节省大量时间。

    转载地址:http://bamv.baihongyu.com/

    你可能感兴趣的文章
    Nginx配置好ssl,但$_SERVER[‘HTTPS‘]取不到值
    查看>>
    Nginx配置实例-负载均衡实例:平均访问多台服务器
    查看>>
    NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
    查看>>
    Nio ByteBuffer组件读写指针切换原理与常用方法
    查看>>
    NIO Selector实现原理
    查看>>
    nio 中channel和buffer的基本使用
    查看>>
    NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
    查看>>
    NI笔试——大数加法
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP:使用 SciKit Learn 的文本矢量化方法
    查看>>
    Nmap扫描教程之Nmap基础知识
    查看>>
    Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
    查看>>
    NMAP网络扫描工具的安装与使用
    查看>>
    NMF(非负矩阵分解)
    查看>>
    NN&DL4.1 Deep L-layer neural network简介
    查看>>
    NN&DL4.3 Getting your matrix dimensions right
    查看>>
    NN&DL4.8 What does this have to do with the brain?
    查看>>
    No 'Access-Control-Allow-Origin' header is present on the requested resource.
    查看>>
    No Datastore Session bound to thread, and configuration does not allow creation of non-transactional
    查看>>